CMSC 350 Project 1

The first programming project involves writing a program that evaluates infix expressions of
unsigned integers using two stacks. The program should consist of three classes. The main class
should create a GUI that allows the user input an infix expression and displays the result. The
GUI should look as follows:

|| Infix Expresson Evaluator — O X

EMermﬁxExmesaonh2+3*5}-8ﬁ*(5-2}

I — |
Evaluate }

Result 14

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI
generator.

The second class should contain the code to perform the infix expression evaluation. The
pseudocode for performing that evaluation is shown below:

tokenize the string containing the expression
while there are more tokens
get the next token
if it is an operand
push it onto the operand stack
else 1f it is a left parenthesis
push it onto the operator stack
else 1f it is a right parenthesis
while top of the operator stack not a left parenthesis
pop two operands and an operator
perform the calculation
push the result onto the operand stack
else if it is an operator
while the operator stack is not empty and
the operator at the top of the stack has higher
or the same precedence than the current operator
pop two operands and perform the calculation
push the result onto the operand stack
push the current operator on the operators stack
while the operator stack is not empty
pop two operands and an operator
perform the calculation
push the result onto the operand stack
the final result is a the top of the operand stack

Be sure to add any additional methods needed to eliminate any duplication of code.

Your program is only expected to perform correctly on syntactically correct infix expressions
that contain integer operands and the four arithmetic operators + - * /. It should not,
however, require spaces between tokens. The usual precedence rules apply. The division
performed should be integer division. A check should be made for division by zero. Should the

expression contain division by zero, a checked exception DivideByZero should be thrown by

the method that performs the evaluation and caught in the main class, where a JOptionPane
window should be displayed containing an error message.

You are to submit two files.

1. Thefirstisa . zip file that contains all the source code for the project, which includes

any code that was provided. The . zip file should contain only source code and nothing

else, which means only the . java files. If you elect to use a package the . java files
should be in a folder whose name is the package name.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the
documentation for the project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include
predefined classes. You need only include the class name for each individual
class, not the variables or methods

b. A test plan that includes test cases that you have created indicating what aspects
of the program each one is testing

c. A short paragraph on lessons learned from the project

Grading Rubric:

Criteria

Design

Meets
5 points

Does Not Meet
0 points

GUI is hand coded and matches
required design (1)

GUIl is generated by a GUI
generator or does not match
required design (0)

Supplied algorithm is used (1)

Supplied algorithm is not used (0)

Code duplication is eliminated (1)

Contains duplicated code (0)

Contains separate class for
expression evaluation (1)

Does not contain separate class
for expression evaluation (0)

Contains checked exception class (1)

Does not contain checked
exception class (0)

Functionality

10 points

0 points

Produces correct value for all
operators(3)

Does not produce correct value
for some operators (0)

Correctly parses expressions without
space delimiters (2)

Does not correctly parse
expressions without space

delimiters (0)

Correctly implements precedence

(2)

Does not correctly implement
precedence (0)

Correctly evaluates parenthesized
expressions (2)

Does not correctly evaluate
parenthesized expressions (0)

Detects division by zero (1)

Does not detect division by zero

(0)

Test Cases

5 points

0 points

All operators included in test cases

(1)

Some operators not included in
test cases (0)

Test cases include expressions
without spaces (1)

Test cases don't include
expressions without spaces (0)

Test cases include cases to test
precedence (1)

Test cases do not include cases to
test precedence (0)

Test cases include cases with
parentheses (1)

Test cases do not include cases
with parentheses (0)

Test cases include a case to test
division by zero (1)

Test cases do not include a case
to test division by zero (0)

Documentation

5 points

0 points

Correct UML diagram included (2)

Correct UML diagram not
included (0)

Lessons learned included (2)

Lessons learned not included (0)

Comment blocks with class
description included with each class

(1)

Comment blocks with class
description not included with
each class (0)

Overall Score

Meets

Does not meet

16 or more

0-15

