
1

CMSC 350 Project 1

The first programming project involves writing a program that evaluates infix expressions of

unsigned integers using two stacks. The program should consist of three classes. The main class

should create a GUI that allows the user input an infix expression and displays the result. The

GUI should look as follows:

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI

generator.

The second class should contain the code to perform the infix expression evaluation. The

pseudocode for performing that evaluation is shown below:

tokenize the string containing the expression

while there are more tokens

 get the next token

 if it is an operand

 push it onto the operand stack

 else if it is a left parenthesis

 push it onto the operator stack

 else if it is a right parenthesis

 while top of the operator stack not a left parenthesis

 pop two operands and an operator

 perform the calculation

 push the result onto the operand stack

 else if it is an operator

 while the operator stack is not empty and

 the operator at the top of the stack has higher

 or the same precedence than the current operator

 pop two operands and perform the calculation

 push the result onto the operand stack

 push the current operator on the operators stack

while the operator stack is not empty

 pop two operands and an operator

 perform the calculation

 push the result onto the operand stack

the final result is a the top of the operand stack

2

Be sure to add any additional methods needed to eliminate any duplication of code.

Your program is only expected to perform correctly on syntactically correct infix expressions

that contain integer operands and the four arithmetic operators + - * /. It should not,

however, require spaces between tokens. The usual precedence rules apply. The division

performed should be integer division. A check should be made for division by zero. Should the

expression contain division by zero, a checked exception DivideByZero should be thrown by

the method that performs the evaluation and caught in the main class, where a JOptionPane

window should be displayed containing an error message.

You are to submit two files.

1. The first is a .zip file that contains all the source code for the project, which includes

any code that was provided. The .zip file should contain only source code and nothing

else, which means only the .java files. If you elect to use a package the .java files

should be in a folder whose name is the package name.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the

documentation for the project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include

predefined classes. You need only include the class name for each individual

class, not the variables or methods

b. A test plan that includes test cases that you have created indicating what aspects

of the program each one is testing

c. A short paragraph on lessons learned from the project

Grading Rubric:

Criteria Meets Does Not Meet

Design

5 points 0 points

 GUI is hand coded and matches
required design (1)

GUI is generated by a GUI
generator or does not match
required design (0)

Supplied algorithm is used (1) Supplied algorithm is not used (0)

Code duplication is eliminated (1) Contains duplicated code (0)

Contains separate class for
expression evaluation (1)

Does not contain separate class
for expression evaluation (0)

Contains checked exception class (1) Does not contain checked
exception class (0)

Functionality

10 points 0 points

Produces correct value for all
operators(3)

Does not produce correct value
for some operators (0)

Correctly parses expressions without
space delimiters (2)

Does not correctly parse
expressions without space

3

delimiters (0)

Correctly implements precedence
(2)

Does not correctly implement
precedence (0)

Correctly evaluates parenthesized
expressions (2)

Does not correctly evaluate
parenthesized expressions (0)

Detects division by zero (1) Does not detect division by zero
(0)

Test Cases

5 points 0 points

All operators included in test cases
(1)

Some operators not included in
test cases (0)

Test cases include expressions
without spaces (1)

Test cases don't include
expressions without spaces (0)

Test cases include cases to test
precedence (1)

Test cases do not include cases to
test precedence (0)

Test cases include cases with
parentheses (1)

Test cases do not include cases
with parentheses (0)

Test cases include a case to test
division by zero (1)

Test cases do not include a case
to test division by zero (0)

Documentation

5 points 0 points

Correct UML diagram included (2) Correct UML diagram not
included (0)

Lessons learned included (2) Lessons learned not included (0)

Comment blocks with class
description included with each class
(1)

Comment blocks with class
description not included with
each class (0)

Overall Score
Meets Does not meet

16 or more 0-15

